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In the pharmaceutical setting, it is often necessary to establish the shelf life of a 

drug product and sometimes suitable to assess the risk of product failure at the desired 

expiry period. The current statistical methodology use confidence intervals for the 

predicted mean to establish the expiry period and prediction intervals for a predicted new 

assay value or a tolerance interval for a proportion of the population for use in a risk 

assessment. A major concern is that most methodology treat a homogeneous 

subpopulation, say batch, either as a fixed effect and therefore uses a fixed-effects 

regression model (Graybill, 1976) or as a mixed-effects model limited to balanced data 
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structures (Jonsson, 2003). However, batch is definitely a random effect as this fact has 

been reflected by some recent methodology [Altan, Cabrera and Shoung (2005), Hoffman 

and Kringle (2005)]. Thus, to assess the risk of product failure at expiry, it is necessary to 

use tolerance intervals since they provide an estimate of the proportion of assay values 

and/or batches failing at the expiry period. In this thesis, we illustrate the methodology 

described by Jonsson (2003) to construct β-expectation tolerance limits for longitudinal 

data in a random-effects setting. We underline the limitations of Jonsson’s approach to 

constructing tolerance intervals and highlight the need for a better methodology. 
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1 Introduction 

 

1.1. Introduction to Interval Estimates 

Scientists and engineers frequently express the need to quantify the uncertainty 

associated with a point estimate in order to make decisions from limited sample data. 

They may wish to obtain more data prior to making a decision if their knowledge of the 

uncertainty is imprecise. To quantify such uncertainty, interval estimates are constructed 

around a point estimate. Three different types of interval estimates may be calculated 

from sampled data. Depending upon the type of application, the analyst may choose a 

confidence interval, a tolerance interval, or a prediction interval.  

Using sample data, some researchers may be interested in estimating a confidence 

interval, a range of values expected to encompass the population parameter of interest 

with some specified level of confidence. One way to think about confidence intervals is 

to consider drawing many samples (in the same manner) from a population. Each sample 

yields its own estimate of the parameter of interest (e.g., the population mean) and 

corresponding confidence interval with a selected or desired confidence coefficient (e.g., 

95%). In this repeated sense, approximately 95% of the confidence intervals will enclose 

the population mean.  

Similar to the confidence interval, a tolerance interval is a range of values 

expected to contain a certain percentage of observations from a population on the 

average. For example, one may be interested in determining a range of values expected to 

encompass 90% of the population on the average.  
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Confidence intervals and tolerance intervals are both interval estimates for 

parameters of the population. A prediction interval is a range of values expected to 

encompass a new (future) observation from the population with a specified level of 

confidence. For example, one may be interested in determining a range of values 

containing the next predicted value with 95% confidence. 

In order to choose the most appropriate interval (confidence, tolerance, or 

prediction), the analyst must decide whether the main interest of the application resides in 

describing the population from which the sample has been selected or in predicting the 

results of a future sample from the same population.  

 

1.2. Motivation 

In the pharmaceutical setting, it is often necessary to establish the expiry period of 

a drug and sometimes suitable to assess the risk of product failure at the desired expiry 

period. The Food and Drug Administration (FDA) guidelines (FDA, 1987) requires that a 

minimum of three batches be tested in stability analysis to account for batch-to-batch 

variability so that a single shelf life is applicable to all future batches manufactured under 

similar circumstances. In addition to the estimation of the individual shelf life for each 

batch, it is also desirable to establish a single shelf life for a drug product based on 

combined stability data from all batches. The FDA guidelines requires that preliminary 

tests of batch similarity be performed before combining the stability data from all 

batches. A test for differences in the intercepts and differences in the slopes of 

degradation lines among different batches is performed to evaluate batch similarity. The 
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FDA recommends the 0.25 level of significance to test these hypotheses. Thus, the 

single shelf life can be determined, based on the ordinary least-squares methods, as the 

time point at which the 95% lower confidence bound for the mean degradation curve of 

the drug characteristic intersects the approved lower specification limit. 

If the hypotheses of equal intercepts and equal slopes are not rejected at the 0.25 

level of significance, a single expiration dating period is usually estimated by fitting a 

single degradation curve based on the pooled stability data of all batches under the 

assumption that batch effects are fixed. If the hypotheses of equal intercepts and equal 

slopes are rejected at the 0.25 level of significance, the FDA recommends determining a 

single expiration dating period of the drug product based on the minimum of shelf lives 

obtained from each batch. However, Chow and Shao (1991) showed that this method had 

no statistical justification since the minimum approach is conservative and does not take 

into account batch-to-batch variability.  

Confidence intervals for the predicted mean are commonly used to establish the 

expiry period of a drug product. Prediction intervals for a predicted new assay value and 

tolerance intervals for a proportion of the population are sometimes used in risk 

assessment. To assess the risk of product failure at expiry, it is more appropriate to use 

tolerance intervals since they provide an interval estimate for the proportion of assay 

values in the population failing at the expiry period.  

The need for tolerance intervals was greatly emphasized during the first half of 

the twentieth century. Wilks (1942) defined and constructed tolerance limits in the case 

of normal distribution with unknown mean and variance. The use of tolerance intervals 
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based on linear models became the interest of various researchers such as Wallis (1951), 

Weissberg and Beatty (1960), Lieberman and Miller (1963), Ellison (1964), Howe 

(1969), Graybill (1976). A procedure for establishing a two-sided tolerance interval based 

on a balanced mixed-effects model was proposed by Liao and Iyer (2004). Under the 

assumption of fixed batch effects, Hsu and Ruberg (1992) proposed a method to estimate 

the expiration dating period of a drug product by using multiple comparison technique for 

pooling stability data with the worst batch. The foregoing methodology (fixed batch 

effects model) assumes that the drug characteristic decreases linearly over time. The 

comparison of regression lines necessitates not only a test of equality of intercepts and 

equality of slopes but also the equivalence of within batch variability. It should be 

recognized, however, that the between-batch variation is often ignored during the 

decision making process for pooling stability data across batches. 

The FDA guidelines indicate that the batches used in long-term stability studies 

for the establishment of drug shelf life should constitute a random sample from the 

population of future production batches. The FDA also requires that all estimated 

expiration dating periods should be applicable to all future batches. Under these 

assumptions, the statistical methods derived from the fixed-effects models may not be 

appropriate. This is due to the fact that statistical inferences about the expiration dating 

period obtained from a fixed-effects model can only be drawn from the batches under 

study and cannot necessarily be applied to future or unobserved batches. The use of 

statistical methods based on a random-effects model is therefore more appropriate for 

establishing the expiration dating period for future production batches. Several 
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researchers have gained interest in the use of tolerance intervals in random-effects 

settings. Lemon (1977) and Mee and Owen (1983) considered the case of one-sided 

tolerance intervals for balanced one-way random-effects models. This was soon followed 

by an extension to the unbalanced random-effects model [see Bhaumick and Kulkarni 

(1991,1996), Bagui et al. (1996)]. Two-sided tolerance intervals for balanced one-way 

random-effects models were also considered by Mee (1984) and an extension for 

unbalanced data was described by Beckman and Tietjen (1989) and Wang and Iyer 

(1994). The computation of a one-sided tolerance limit for a one-way random-effects 

model for both balanced and unbalanced data using the concept of a generalized 

confidence interval explored by Weerahandi (1993, 1995) was extended by 

Krishnamoorthy and Thomas (2004). Hoffman and Kringle (2005) proposed a 

methodology for constructing two-sided tolerance intervals for general random-effects 

models in both balanced and unbalanced cases. A procedure for constructing a two-sided 

tolerance limits without the normality assumption for both balanced and unbalanced 

ANOVA models by using a nested bootstrap method was proposed by Shoung et al. 

(2005). However, all the aforementioned analytical methods are based on a cross-

sectional approach and therefore do not utilize the longitudinal structure of the data 

(which can lead to more accurate tolerance intervals) or used distribution-free methods 

which have limitations in small samples since they are based on order statistics. The last 

two aforementioned methodologies [Hoffman and Kringle (2005), and Shoung et al. 

(2005)] use the β-content tolerance intervals procedure which are mainly intended for 

drugs where the risk of adverse side effects rapidly increases with an overdose, i.e. even a 
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minor overdose may result in death (Petzold, 2001). Jonsson (2003) proposed a new 

methodology that not only took into account the longitudinal structure of the data but also 

used the β-expectation tolerance intervals procedure which are intended for drugs where 

the expected outcome of an overdose may not cause death (Petzold, 2001). However, 

Jonsson’s approach to tolerance intervals treats the slopes as a fixed effect and needs to 

be enhanced since the random-effects slopes are of extreme importance to the 

pharmaceutical industry.  

In summary, the main difference between the fixed-effects models and the 

random-effects models is that the random-effects model incorporates the fact that batches 

are considered a random sample drawn from the population of all production batches, 

including future ones if the process does not change. Hence, the intercepts and slopes 

used to characterize the degradation of a drug product should be considered as random 

variables.  

 

1.3. Objective 

The aim of the present work is to describe and illustrate tolerance interval 

methods based on random-effects and fixed-effects models. We will also describe 

methods for confidence intervals and prediction intervals based on fixed-effects models. 

Methods for tolerance intervals in the random-effects setting will be based on those 

described by Jonsson (2003) while models for tolerance intervals in the fixed-effects 

setting will be based on those described by Wilks (1941) and Graybill (1976). In Chapter 

2, we will introduce the fixed-effects model, the random-effects model, and the interval 
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estimates. In Chapter 3, we will demonstrate the results from the methodology using an 

analysis dataset. In Chapter 4, we will draw the conclusion from the analysis and make 

suggestions for future research.  
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2 Methodology  

 

2.1. Introduction 

In this chapter, we introduce the fixed-effects model (Section 2.2) and the random-effects 

model (Section 2.3). Methods for describing confidence intervals, prediction intervals, 

and tolerance intervals are described in Sections 2.4, 2.5, and 2.6 respectively.  

 

2.2. The Normal Fixed-Effects Model Definition 

The fixed-effects model is of the form 

 ,= +y Xα ε  (2.1) 

where 

 y is an 1n×  vector of observed response values, 

 X is an ( )n p n p× > observed design matrix corresponding to the fixed-effects, 

 a is a 1p× vector of fixed-effects parameters, and 

 ε is an 1n× unobservable vector of residuals. 

The residuals , = 1, ,
i

i nε … are assumed to be independent and identically 

distributed ( ), 2N 0 σ . Thus, the variance of y, ( )var  =y V is given by 

= = I = var( ) var( ) 2V Xα + ε ε σ , where I is an n n×  identity matrix. 
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2.3. The Normal Random-Effects Model Definition 

The random-effects model introduced by Laird and Ware (1982) extends the fixed-effects 

model in equation (2.1) such that 

      ,= + +y Xα Zβ ε  (2.2) 

where 

 y , X , a , andε are as defined in the fixed effects model, 

 Z is an n q× observed design matrix for the random-effects, and  

 β is the 1q × vector of random-effects/coefficients parameters. 

The covariance of y, var(y) = V given by V = var(Xα + Zβ + ε). This model assumes that 

the random-effects and the residuals are independent so that     

    V = var(Xα) + var(Zβ) + var(ε). 

Since α describes the fixed-effects parameters, var(Xα) = 0. Hence, 

V = Zvar(β)Z’ + var(ε). 

Under the assumption that the random-effects follow normal distributions and letting 

 var(β) = G we obtain 

 ,V = ZGZ’+ Σ  (2.3) 

whereβ ~N(0,G) and ε ~N(0,Σ). 
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2.4. Confidence Interval Definition 

For a fixed-effects simple linear regression model, consider estimating the mean response 

of a population given particular values of the predictor x. A two-sided 100(1 – α)% 

confidence interval for the mean response
0Y x

µ is given by 

2

0
0

1
22

1

( )1
ˆ ,

( )
n

i

i

x x
y t s

n
x x

α
−

=

−
± +

−∑
 (2.4) 

where 0ŷ  

 represents the estimate of the mean response at 0x x= , 

 n is the population size, and 

 
1

2

t α
−

is the 1
2

α
− percentile of the central t-distribution with n-2 degrees of freedom. 

 

2.5. Prediction Interval Definition 

For the fixed-effects simple linear regression model, consider predicting the response of a 

single future observation given particular values of the predictor x. A two-sided 100(1 – 

α)% prediction interval for a single response value 0Y is given by  

 
2

0
0

1
22

1

( )1
ˆ 1 ,

( )
n

i

i

x x
y t s

n
x x

α
−

=

−
± + +

−∑
 (2.5) 

where 

 0ŷ represents the estimate of the mean response at 0x x= , 

 n is the population size, and 
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1

2

t α
−

is the 1
2

α
− percentile of the central t-distribution with n-2 degrees of 

freedom. 

 Confidence intervals reflect the uncertainty in estimating the mean response 

which is a function of the parameter estimates. Prediction intervals reflect the uncertainty 

from the parameter estimates as well as the uncertainty of a future observation. This is 

why prediction intervals are wider than confidence intervals. Comparing the two 

formulae in equation (2.4) and equation (2.5), the prediction intervals include an extra 

“1” in the square root which reflects the additional uncertainty. 

 

2.6. Tolerance Interval 

2.6.1 Introduction 

In this section, we first define the tolerance interval introduced by Wilks (1941) as it 

applies to cross-sectional data under the fixed-effects model. We then define the β-

content tolerance interval described by Graybill (1976) under the fixed-effects model as it 

applies to longitudinal data. We finally describe the methods used for estimation of the β-

expectation tolerance interval as it applies to longitudinal data in the normal random-

effects setting as it was introduced by Jonsson (2003).  

 Consider estimating a number
p

γ such that a ( )1 p− proportion of the responses in 

the population under study is below it; or two numbers 1 / 2, / 2p p
γ γ− such that 

a ( )1 p− proportion of the responses in the population is between the two numbers. Let 

the assay result (e.g., percent of label claim) be represented by a continuous random 
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variable Y with cumulative distribution function F, and let 1w and 2w be defined by the 

relation 1 2 1 2( ) ( ) ( )
Y

P w Y w F w F w β< < = − = , where β is a predetermined probability. A 

β-expectation tolerance interval requires that 100β% of the individual responses from the 

batches fall between the estimated limits on the average; that is, the expectation over 1ŵ  

and 2ŵ , ( )1 2
ˆ ˆ( )YE P w Y w< < , equals β exactly or at least approximately (Jonsson, 2003).  

Though β-expectation tolerance intervals can be constructed with or without 

distributional assumptions, distribution-free tolerance limits have limitations in small 

samples, as they are based on order statistics (Y(r), Y(n-r+1)) with r < (n+1)/2.  

 

2.6.2 Wilks’ Method for Tolerance Interval 

Let the independent and identically distributed random variables 1, ,
n

Y Y… from a 

normal distribution N(µ, σ
2
) represent a cross-sectional sample at some time. If Y is a new 

observation from N(µ, σ
2
) and if Y and S

2
 are the unbiased estimators of µ and σ

2
, 

respectively, then 
Y Y

S

−
is distributed as ( 1)

1
1 nT

n
−+ , where ( 1)n

T − denotes a Student T-

variable with n-1 degrees of freedom. Hence, the β-expectation tolerance bounds at each 

time point introduced by Wilks (1941) are of the form  

 ,
C

Y K S±  (2.6) 

where 

 1
( 1)

2

1
 1

C
n

K t
n

β+
−

= +  (2.7) 
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 and 1
( 1)

2
n

t β+
−

is the 100(
1

2

β+
)-percentile in the distribution of ( 1)n

T − . 

 

 

 

2.6.3 Graybill’s Method for Tolerance Interval 

For a fixed-effects simple linear regression model, consider finding a range of values 

expected to contain a certain percentage of observations from a population with some 

specified level of confidence. The thQ  tolerance limits at the point 0x  and with 

confidence coefficient 1 α−  is of the form  

 0 1 0
ˆ ˆ ˆ

Q
x gα α σ+ ±  (2.8) 

where 
Q

g  is given by 

    

: ;( )

2
2 0

2

,

( )1
,

( )

Q n p

i

g At

x x
A

n x x

α θ−=

−
= +

−∑
 

: ;( )n p
tα θ−  is the upper α probability point of the noncentral t distribution with n – p degrees 

of freedom and noncentrality parameter 
Q

N

A
θ = . 

    

2.6.4 Jonsson’s Method for Tolerance Interval 

2.6.4.1 Introduction 

 A considerable improvement of Wilks’ method for tolerance intervals can be 

achieved by utilizing the longitudinal structure of the data so that all the n subjects are 
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used at each time point. Using the pharmaceutical stability framework, a mixed-effects 

model, the variance components regression model, used by Jonsson (2003) is defined as 

 j i ijt ,  1, , ,  1, ,  ,  
ij

Y i T j nµ δ ε= + + = … = …  (2.9) 

where 

ij
Y is the assay result (percent label claim) for the jth batch at the ith time point, 

jµ is a random-effect that reflects factors that are specific to the jth batch, 

δ is a fixed-effect which expresses the change over time common to all batches,  

i
t represent the time points at which the response is defined, and 

ijε is a random residual that summarizes the effects of all factors that have not been 

included in the model. 

 The β-expectation tolerance bounds at time t for the random-effects model are 

given by  

 ˆ ˆˆ ,
t L

K Vµ ±  (2.10) 

where ˆ
t

µ and V̂ are estimators of the mean and the square root of the variance of
ij

Y , 

respectively, and are based on all nT observations. The quantity ˆ
L

K depends on the time t 

and is estimated from the data whereas KC in equation (2.7) is a constant across 

time. ˆ
L

K is determined so that the β-expectation property holds.  
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2.6.4.2 Estimation  

 The problem with constructing tolerance bounds using equation (2.9) are two 

fold: to find a good estimator of V and to determine the value of ˆ
L

K , which depends upon 

the distribution of 
ˆ

ˆ
ij t

Y

V

µ−
. One approach is to use a Taylor series approximation so that 

the tolerance bounds have at least approximately the β-expectation property.    

We assume that the
j

µ , j = 1, …, n, are identically distributed N(α, σU
2) and the 

εij, j = 1, …, n, i = 1, …, T, are identically distributed N(0, σε
2). We also assume that 

the jµ and the εij are independent of each other. Thus the Yij are N(α + δti, σU
2
 + σε

2). The 

tolerance interval is estimated as 1 2
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( , ) ( , )

i L i L
w w K V K Vµ µ= − + , where ˆˆˆ

i i
tµ α δ= + is an 

estimator of
i i

tµ α δ= + and V̂ is some unbiased estimator of 2 2

U=V εσ σ+ .    

Based on data from the j
th

 batch, let ˆ
j

α and ˆ
jδ be the ordinary least squares estimators of α 

and δ . The best unbiased estimators of α and δ, α̂ and δ̂ , are given by 
1

ˆ
ˆ

n
j

j n

α
α

=

=∑  and 

1

ˆ
ˆ

n
j

j n

δ
δ

=

=∑ , respectively. In addition, we define the corrected sum of squares as 

2

1

( )
T

tt i

i

W t t
=

= −∑ , where
1

T
i

i

t
t

T=

=∑  is the mean time. Then, 

2 2 2 2

U ( )ˆˆ , .i
i i

tt

t t
t N t

n nW

ε εσ σ σ
α δ α δ

 + −
+ + + 

 
∼  
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 Let ' ˆˆ
r i L

w K Vµ= ± , (r = 1, 2) be provisory estimators such that
L

K is an arbitrary 

constant. Since V( 'ˆ
r

w ) = V( '
ŵ ), using a Taylor series approximation we obtain 

 ( ) ( )
'

' ' (2) (2)

2 1 2 1 2 1

ˆV( )
ˆ ˆ( ) ( ) ( ) ( ) ( ( ) ( ) .

2

w
E F w F w F w F w F w F w− ≈ − + −  (2.11) 

If we let F be the cdf of a normally distributed random variable with variance V
2 

and Φ  

be the cdf of a corresponding standardized variable, we obtain the following three 

relations: 

2 1( ) ( ) 2 ( ) 1,
L
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L
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2
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i L i L
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V t K V V

t t
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n nW

ε ε
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α δ

σ σ σ
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= + +
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= + +

 

Thus,  
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   −
= Φ − − + + −  
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 (2.12) 

 

2.6.4.2.1. Estimation of V̂  

We define the following sums of squares: 

 2

1 1

( ) ,
n T

YY ij j

j i

W Y Y
= =

= −∑∑  (2.13) 

 
1 1
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n T
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= − −∑∑  (2.14) 
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1

( ) .
n

j

j

S Y Y
=

= −∑  (2.15) 

If we define 
1

n
j

j

Y
Y

n=

=∑ , then, 
2 2

2 1
U( ) , and

1 1

nS

n T n

εσ χ
σ −+

− −
∼ .  
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( 1) 1

ˆ
ˆ .

( 1) 1 ( 1) 1
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n T

W W
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ε
ε

δ σ
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−
=

− − − −
∼  (2.16) 
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Since
1

S

n −
and 2ˆ

εσ are independent of each other and ofα̂ and δ̂ , an unbiased estimator 

of 2 2 2

U
V εσ σ= + is given by 

 2 2 2 2 1ˆ ˆ ˆ ˆ (1 ).
1

U

S
V

n T
ε εσ σ σ= + = + −

−
 (2.17) 

Jonsson (2003, Table 1) shows that 2
V̂ is in fact a biased estimator of V and therefore 

needs to be corrected. Using a Taylor series expansion, the expectation of V is  

 
2 2

2 2

2 3/2 2 2

ˆ ˆ( ) ( )ˆ ˆ( ) ( ) [1 ].
8( ) 8( )

V V V V
E V E V V V

V V
= ≈ − = −  (2.18) 

This leads to the following adjusted estimator of V  

�
1

2
2

2 2

ˆ( )ˆ 1
8( )

V V
V

V

−
 
 −
  

. 

It follows from equations (2.16) and (2.17) that the variance of 2
V̂ , 2ˆ( )V V , is of the form 
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 This implies that  
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2 2
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where  
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1
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.
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−
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+
 (2.19) 

Hence an estimator of 2 2

UV εσ σ= + is given by 
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 (2.20) 

where  

 

2

2 2

1
ˆ (1 )

( 1) 3ˆ .
ˆ ˆ ( 1) 1

U

n TTR
n T

ε

ε

σ

σ σ

−  − −
= ⋅ 

+ − − 
 (2.21) 

 This correction factor involving the estimator R̂ helps reduce the bias in small 

samples since the ratio of the estimated variance components has an F-distribution. 

Jonsson (2003) found through simulation studies that the uncorrected estimator of V has a 

negative bias that decreases in absolute value with increasing values of n, and to a lesser 

extent with increasing values of T. 
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2.6.4.2.2. Estimation of ˆ
L

K  

Using equation (2.12) and equating it to a predetermined value of β, we may get a 

relationship between R and KL.  

 

( )' '

2 1

2 22 2 2
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ˆ ˆ( ) ( ) 2 ( ) 1

1 1 ( ) (1 )
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1 2 1 ( 1) 1 22 1
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− = Φ − −

  
     − −

+ + + + −      
− − −     −

   

=

 (2.22) 

where R is given by (2.19).  

We then use this relationship to find an estimated value of KL from an observed value of 

R. We write a quadratic equation in R by equating (2.12) to the predetermined value β 

since it is difficult to write KL as an explicit function of R. This quadratic equation has 

one root of interest. 

Let 

 
2( )

, and
1

(1 )

i

tt

t t
C

n W
T

−
=

−

 (2.23) 

 
22

2 (2 ( ) 1 )2 1
[ ],

exp{ }
2

L

LL
L

K
A

KK n
K

π βΦ − −
= −

−

 (2.24) 

where C is a component that is determined by spacing of the time points at which the 

measurements are made. For a given n and T, C=0 at t t= and reaches the maximum at 

the end points of the range of t. (See Jonsson, 2003 for an example). We could note, 
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however, that the maximum at the end points decreases with increasing T (Jonsson, 

2003). Equation (2.22) becomes 

 

1

2 2 2
2 2

( 1) ( 1)
( ( 1) 1)[1 ] [( ( 1) 1) [1 ] ( 2)( ( 1) 1)(1 ( 1) )]

.
2

L L

n C n C
n T n T nT n T n A

K K
R

nT

− −
− − − − − − − − − − − − −

=
−

 (2.25) 

 

There exists a one-to-one relationship between R∈(0,1) and KL∈  
LK

I such that R 

decreases with increasing KL. The quantity ˆ
L

K denotes the value of KL corresponding to 

an estimated value of R given in (2.21). Jonsson (2003) states that KL becomes 

empirically almost linearly dependent on 

 
2 2(1 )

1 ( 1) 1

R R
Z

n n T

−
= +

− − −
 (2.26) 

provided the predetermined value (β) is 0.90 or 0.95. For larger values of β, especially for 

small n, we fit KL to polynomial functions of Z. The estimation of KL is done using a 

computer program which is found in the Appendix section. 

 

2.6.4.3 β-Expectation Tolerance Interval 

The estimated 95%-expectation tolerance interval in the population of random 

batches at time t based on longitudinal data is of the form ˆ ˆˆ ˆ ˆ ˆˆ ˆ( , )
L L

t K V t K Vα δ α δ+ − + + .  

The values of V̂ and ˆ
L

K are derived from equations (2.20) and (2.25) respectively. 
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3 Applications 

 

In this chapter, the methodology for estimation proposed in Chapter 2 is studied using an 

example dataset. We demonstrate the results using a random-effects model with data 

from a pharmaceutical stability data simulation which was performed by Obenchain 

(1990).  

    Table 1: Data Structure 

Observations Batch Month Y  

1 1 0 102.783 

2 1 1 99.350 

3 1 3 98.625 

4 1 6 101.525 

5 1 9 96.750 

6 1 12 97.350 

7 2 0 102.550 

8 2 1 99.650 

9 2 3 104.100 

10 2 6 101.275 

11 2 9 95.850 

12 2 12 93.167 

13 3 0 104.583 

14 3 1 101.200 

15 3 3 101.600 

16 3 6 100.850 

17 3 9 100.925 

18 3 12 97.467 
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The data set represents measurements from three batches. Six replicate assay results, 

expressed in percent label claim, were measured in months at different storage times, 

specifically at times 0, 1, 3, 6, 9, and 12 months. Hence, the six time points (T=6) were 

considered at t = 0, 1, 3, 6, 9, and 12. For all three batches, two replicate response values 

were missing at times 1, 3, 6, and 9 months. For all three batches, the process begins with 

a computation of the mean of the replicate assay results across the six replicates. The 

dataset follows a structure as seen in Table 1. 

 

3.1. Presenting Results from the Analysis 

Recall that the confidence limits are of the form
2

0
0

1
22

1

( )1
ˆ

( )
n

i

i

x x
y t s

n
x x

α
−

=

−
± +

−∑
. We compute 

the 95% confidence interval for the mean of the assay results across the three batches at 

time 0 month under the fixed-effects model to obtain the values 102.55 and 0.7694 

for 0ŷ and ( )0
ˆse y , respectively. Note that ( )

2

0
0

2

1

( )1
ˆ

( )
n

i

i

x x
se y s

n
x x

=

−
= +

−∑
. This yields a 

confidence interval of (100.92, 104.18). The 95% confidence intervals for the mean 

response at the remaining time points are displayed in Table 2. Confidence intervals for 

the random-effects model are not discussed in this thesis. 

A 95% prediction interval that will contain a single future observation from a 

population of size n is of the form
2

0
0

1
22

1

( )1
ˆ 1

( )
n

i

i

x x
y t s

n
x x

α
−

=

−
± + +

−∑
. For example if we were 
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interested in predicting the response from a single future observation at month 0, then a 

95% prediction interval is (97.83, 107.26). These intervals are computed for the fixed-

effects model and the corresponding prediction intervals for months 1 – 12 are 

summarized in Table 2. Prediction intervals for the random-effects model are not 

discussed in this thesis. 

Using the cross-sectional structure of the data under the fixed-effects model, the 

95%-expectation tolerance of the responses for any batch in the population is of the 

form
C

Y K S± , where 0.975(2)

1 1
1 4.303 1 4.303 1.1547 4.970

3 3
CK t= + = + = × =  and 

1
( 1)

2
n

t β+
−

is the 100(
1

2

β+
)-percentile in the distribution of ( 1)n

T − . At month 0, this interval is 

(97.78, 108.83). The tolerance intervals for the remaining time points can be found in 

Table 3. 

Recall that under the fixed-effects model, the 95% tolerance interval that contains 

at least 95% of the population described by a normal distribution is of the form 

0 1 0 0 1 0
ˆ ˆ ˆ ˆˆ ˆ( , )

Q Q
x g x gα α σ α α σ+ − + +  (Graybill, 1976). Using a longitudinal data structure 

approach, the 95% tolerance interval that contains at least 95% of the population 

described by a normal distribution under the fixed-effects model at month 0 is (95.61, 

109.49). The tolerance intervals for the remaining time point are given in Table 3. 

However, using the longitudinal structure of the data under the random-effects 

model, the 95%-expectation tolerance interval of the responses for any batch in the 

population is of the form ˆ ˆˆ ,
t L

K Vµ ± where the values of ˆ
L

K are given in Table 3. Using the 
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SAS Software, a regression analysis on the pairs ( , )
i ij

t Y was done using a random-

effects model definition in PROC MIXED. The computation yielded the following 

values: 

102.78, 3.5, 110.83,

ˆˆ1.90, 102.55, 0.49724

ˆ ˆ0.25771, 4.16493

tt

U

Y t W

B

ε

α δ

σ σ

= = =

= = = −

= =

 

At this point ˆ
L

K needs to be determined. Unfortunately, the expression in equation (2.25) 

does not readily yield values for ˆ
L

K given R, n, T, C, and A. Instead, the expression is 

solved for R by iterating through various values of ˆ
L

K  at different time points. Fitting KL 

to polynomial functions of Z using equation (2.26) gives ˆ ˆ0.67266 2.14916R and V= =  

for equations (2.21) and (2.20) respectively. For example, let’s assume that a value of ˆ
L

K  

corresponding to ˆ 0.6727R =  is desired to construct a 95% tolerance interval at t = 0 

months. Let’s further assume that n = 3, T = 6, t and 
tt

W  are given as aforementioned. 

The computer program (see Appendix) gives a list of values of ˆ ˆ( , )
L

K R from which two 

pairs are of our interest: (2.3793, 0.6724) and (2.3821, 0.6673). We conclude from these 

two pairs that ˆ
L

K is found in the interval (2.3793, 2.3821) since R̂ belongs to the interval 

(0.6673, 0.6724). Through a series of iteration of ˆ
L

K from 2.3793 to 2.3821 gives 

ˆ ˆ( , )
L

K R = (2.3809, 0.6720). Therefore, the solution is ˆ 2.3809
L

K ≈ . The estimated 95%-

expectation tolerance interval for the response Y at month 0 under the random-effects 

model is (97.43, 107.66). The variation in the intervals from one time point to another is 
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due to the change in ˆ
L

K . The tolerance intervals are computed and given in Table 3. 

Figure 1 shows a graph of the Jonsson’s, Wilks’, and Graybill’s tolerance intervals. 

 

Table 2: 95% Confidence & Prediction Intervals 

 

  Wilks' 

 S.D. S.E. Predicted 95% CI 95% P.I. 

Month Y  Ŷ  S  ( )0
ˆse y  Fixed Fixed 

0 103.31 102.55 1.1126 0.7694 (100.92, 104.18) (97.83, 107.26) 

1 100.07 102.05 0.9930 0.6853 (100.60, 103.50) (97.39, 106.71) 

3 101.44 101.06 2.7409 0.5510 (99.89, 102.22) (96.48, 105.63) 

6 101.22 99.56 0.3413 0.5012 (98.50, 100.63) (95.01, 104.01) 

9 97.84 98.07 2.7079 0.6593 (96.67, 99.47) (93.43, 102.71) 

12 96.00 96.58 2.4495 0.9242 (94.62, 98.54) (91.74, 101.42) 

 

 

 

Table 3: 95% Tolerance Intervals 

 95% T.I.  

Month 
Random 

(Jonsson) 

Fixed 

(Graybill) 

Fixed 

(Wilks) 
ˆ

L
K  

0 (97.43, 107.66) (95.61, 109.49) (97.78, 108.83) 2.3809 

1 (96.94, 107.16) (95.23, 108.87) (95.13, 105.00) 2.3768 

3 (95.95, 106.16) (94.43, 107.69) (87.82, 115.06) 2.3768 

6 (94.41, 104.71) (92.99, 106.13) (99.52, 102.91) 2.3969 

9 (92.83, 103.31) (91.29, 104.85) (84.39, 111.30) 2.4381 

12 (91.22, 101.94) (89.39, 103.77) (83.82, 108.17)  2.465 
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Figure 1: Tolerance Intervals 
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3.2. Discussion and Summary of the Analysis 

Under the fixed-effects model, the 95% confidence intervals for the mean of the assay 

results across the three batches are narrower than the 95% prediction intervals. This is 

mainly justified from the fact that the formula for the 95% prediction intervals include an 

extra “1” which reflects the additional uncertainty that emanate from a future 

observation. Tolerance intervals obtained under either the fixed-effects or random-effects 

model using the longitudinal structure of the data are more appropriate than tolerance 

intervals computed under the fixed-effects model using the data from a cross-section at 

each time point. This is an evidence since the former does not use the entire data. Using 

the longitudinal data structure, the tolerance intervals obtained from Jonsson’s method 

under the random-effects model are narrower than the tolerance intervals obtained from 

Graybill’s method under the fixed-effects model. The difference between the two types of 

tolerance intervals is due to the fact that Graybill’s method for tolerance interval does not 

incorporate a random effect into the model. We should also notice that there are some 

fundamental differences between Jonsson’s method, Graybill’s method, and Wilks’ 

method for tolerance intervals. Jonsson’s method uses the concept of β-expectation 

tolerance interval under the random-effects model for a longitudinal data structure; the 

covariance structure is compound symmetry. Graybill’s method uses the concept of β-

content tolerance interval under the fixed-effects model for a longitudinal data structure; 

the covariance structure does assume independence. Wilks’ method uses the concept of 

β-expectation tolerance interval under the fixed-effects model for a cross-sectional data 
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structure; no covariance structure is assumed under Wilks’ method. The tolerance 

intervals for Jonsson’s, Wilks’, and Graybill’s methods are shown in Figure 1. 
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4 Conclusions and Future Research 

In this thesis, we described three types of intervals estimates using longitudinal 

structured data. We first began by introducing the fixed-effects model which treated our 

population parameter of interest as being fixed with respect to time. We built on the fact 

that the population parameter of interest was in fact a random-effects parameter as was 

indicated by most recent methodology. In fact, a major concern in the pharmaceutical 

industry is that most methodology treats the batches as a fixed effects and therefore 

ignores the between-batch variability. Inference made based on fixed-effects models are 

not applicable to future or unobserved batches. Therefore, the use of statistical methods 

based on a random-effects model (treating intercepts and/or slopes as a random-effects) is 

more appropriate for establishing the expiry period applicable to future production 

batches.  

We illustrated the confidence intervals for the predicted mean, which are 

commonly used to establish the expiry period of a drug product. We then described the 

prediction intervals for a predicted new assay value and the tolerance intervals for a 

proportion of the population which are sometimes used in risk assessment. However, it is 

more appropriate to use tolerance intervals in order to assess the risk of product failure at 

expiry since they provide an interval estimate for the proportion of assay values in the 

population failing at the expiry period.  

We focused our attention to the β-expectation tolerance interval, which requires 

that 100β% of the individual responses from the batches fall between the estimated limits 

on the average. We chose not to use the other type of tolerance interval, the β-content 
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tolerance interval, because they are mainly intended for drugs where the risk of adverse 

effects rapidly increases with an overdose such that even a minor overdose may result in 

death (Petzold, 2001). Our choice of tolerance interval, the β-expectation tolerance 

interval, is intended for drugs where the expected outcome of an overdose may only 

cause discomfort (Petzold, 2001). Since our main interest is on over-the-counter 

medications, the use of this type of tolerance interval is more appropriate. Furthermore, 

β-content tolerance intervals appear to be too wide for samples when the within-batch or 

the between-batch variability is large [Jonsson (2003), Hoffman and Kringle (2005)].  

We compared tolerance intervals based on cross-sectional data to tolerance 

intervals based on longitudinal data. This led us to the conclusion that it is more 

appropriate to use tolerance intervals derived from longitudinal than those obtained from 

cross-sectional data since the latter do not use the entire data. This was shown in greater 

detail by Jonsson (2003).  

We finally used the longitudinal data structure to compare tolerance intervals obtained 

using Jonsson’s approach under the random-effects model to tolerance intervals using 

Graybill’s method under the fixed-effects model. We found that the tolerance intervals 

obtained from Jonsson’s method are narrower than the tolerance intervals obtained from 

Graybill’s method. This weakness in Graybill’s methodology is due to the fact that it 

does not incorporate a random effect into the model.  

Thus, our findings have led us to a few limitations with the data used for the 

purpose of the analysis and the methods used for the computation of the random-effects 

tolerance intervals. In fact, most pharmaceutical stability data are limited when it comes 
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to the number of batches used. Even though the FDA recommends that at least three 

batches be used in the analysis of stability data, the minimum number of three batches 

seems too small for the computation of statistical intervals. The dataset used in our 

analysis which was performed by Obenchain (1990) falls in the same category. Due to 

the small number of batches, the intervals computed are wide because of the large within 

batch variation ( ˆ 4.16493εσ = ).  

Longitudinal-based methods for computing statistical intervals cannot be used 

without distributional assumptions. However, distribution-free methods are not 

appropriate for small sample sizes.  

The β-expectation tolerance interval presented by Jonsson (2003) is mainly 

intended for small samples where there is a large within or between subjects variation. 

This interval was proven to be superior to Wilks’ (1941) and Graybill’s approaches as the 

lengths of the intervals are smaller on the average, while the β-expectation property is 

simultaneously maintained. This is especially the case when the within subjects variation 

is larger than the between subjects variation. 

 However, the methodology proposed by Jonsson (2003) needs further 

improvement. Researchers need to allow for addition of the random slopes in the model 

since the current approach only allows for random intercepts. This new methodology 

should also account for the case of unbalanced data. A method could be developed to 

incorporate the enhanced Jonsson’s approach to tolerance intervals in the SAS “MIXED” 

procedure.  
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6 Appendices 

 

6.1. SAS Code 

/**********************************************************************

**************** 

***********************************************************************

**************** 

Kakotan Sanogo 

    Under the Guidance of Drs. Jessica M. Ketchum, 

Charles W. Kish, 

    and Ramakrishnan Viswanathan 

    Department of Biostatistics, Viginia Commonwealth 

University 

    Division of Statistics, Wyeth Consumer Healthcare  

Modified on: 11-Dec-2008 

Dataset: Obenchain (1990) 

References: Analysis of Messy Data, Miliken & Johnson, 2002 

   The Theory and Application of the Linear Model, 

Graybill, 1976 

   A Longitudinal Approach for Constructing beta-

Expectation 

   Tolerance Intervals, Jonsson, 2003 

   Determination of Sample Sizes for Setting Tolerance 

Limits, Wilks, 1941 

***********************************************************************

*************** 

***********************************************************************

**************/ 

 

 

data rc;  

   input batch month r1-r6;  

   array r{6};  

   monthc = month;  

   drop i r1-r6;  

   do i = 1 to 6;  

      y = r{i};  

      if (y ^= .) then output;  

   end;  

    datalines;  

1   0  101.2 103.3 103.3 102.1 104.4 102.4  

1   1   98.8  99.4  99.7  99.5    .     .  

1   3   98.4  99.0  97.3  99.8    .     .  

1   6  101.5 100.2 101.7 102.7    .     .  

1   9   96.3  97.2  97.2  96.3    .     .  

1  12   97.3  97.9  96.8  97.7  97.7  96.7  

2   0  102.6 102.7 102.4 102.1 102.9 102.6  

2   1   99.1  99.0  99.9 100.6    .     .  
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2   3  105.7 103.3 103.4 104.0    .     .  

2   6  101.3 101.5 100.9 101.4    .     .  

2   9   94.1  96.5  97.2 95.6     .     .  

2  12   93.1  92.8  95.4 92.5   92.2  93.0  

3   0  105.1 103.9 106.1 104.1 103.7 104.6  

3   1  102.2 102.0 100.8  99.8    .     .  

3   3  101.2 101.8 100.8 102.6    .     .  

3   6  101.1 102.0 100.1 100.2    .     .  

3   9  100.9  99.5 102.5 100.8    .     .  

3  12   97.8  98.3  96.9  98.4  96.9  96.5  

;  

proc sort; by batch month;  

proc means; by batch month; var y; output out = ymeans mean = y;  

proc print data = ymeans; 

run; 

data test; 

 set ymeans(keep=batch month y); 

 proc print; 

run; 

 

***********************************************************************

******** 

***********************************************************************

******** 

COMPUTATION OF CONFIDENCE INTERVALS: FIXED-EFFECTS MODEL 

***********************************************************************

******** 

***********************************************************************

********; 

****** Method ONE; 

proc mixed data = test; 

class  batch; 

 model y = month /solution outp = out1 outpm = out2 cl; 

 title '95% Confidence Intervals for the Fixed-Effects Model'; 

run; 

proc print data = out2; 

run; 

 

****** Method TWO; 

proc mixed data = test; 

class  batch; 

 model y = month /solution outp = out1 outpm = out2 cl; 

 title '95% Confidence Intervals for the Fixed-Effects Model'; 

 estimate "time0" intercept 1 month 0/ cl df=16; 

 estimate "time1" intercept 1 month 1/ cl df=16; 

 estimate "time3" intercept 1 month 3/ cl df=16; 

 estimate "time6" intercept 1 month 6/ cl df=16; 

 estimate "time9" intercept 1 month 9/ cl df=16;  

 estimate "time12" intercept 1 month 12/ cl df=16; 

run; 

 

**** Method THREE; 

proc glm data=test ; 

 model y=month / SS3 clm  ;   *clm Prints 95% confidence  
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        intervals for the 

mean of each observation ; 

    title '95% Prediction Intervals for the Fixed-Effects Model'; 

 estimate "time0" intercept 1 month 0 ; 

 estimate "time1" intercept 1 month 1 ; 

 estimate "time3" intercept 1 month 3; 

 estimate "time6" intercept 1 month 6; 

 estimate "time9" intercept 1 month 9;  

 estimate "time12" intercept 1 month 12;   

run; 

 

***********************************************************************

******** 

***********************************************************************

******** 

COMPUTATION OF CONFIDENCE INTERVALS: RANDOM-EFFECTS MODEL 

***********************************************************************

******** 

***********************************************************************

********; 

*****Method ONE; 

proc mixed data = test; 

 class  batch; 

 model y = month / s cl outpm=predm ;     

 random  int month/ sub=batch s g v;  

 title '95% Confidence Intervals for the Randam-Effects Model'; 

run; 

proc print data = predm; 

run; 

 

******Method TWO; 

proc mixed data = test; 

class  batch; 

 model y = month /solution outp = out1 outpm = out2 cl ; 

 random intercept month / sub = batch type = un solution v vcorr; 

 title '95% Confidence Intervals for the Randam-Effects Model'; 

 estimate "time0" intercept 1 month 0/ cl df=12; 

 estimate "time1" intercept 1 month 1/ cl df=12; 

 estimate "time3" intercept 1 month 3/ cl df=12; 

 estimate "time6" intercept 1 month 6/ cl df=12; 

 estimate "time9" intercept 1 month 9/ cl df=12;  

 estimate "time12" intercept 1 month 12/ cl df=12; 

run; 

 

/******************************************************************* 

******************************************************************* 

COMPUTATION OF PREDICTION INTERVALS: FIXED-EFFECTS MODEL 

******************************************************************* 

*******************************************************************/ 

proc glm data=test; 

 model y=month / SS3 cli  ;   *cli Prints 95% prediction  

        intervals for the mean 

of each observation ; 

title '95% Prediction Intervals for the Fixed-Effects Model'; 
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 estimate "time0" intercept 1 month 0 ; 

 estimate "time1" intercept 1 month 1 ; 

 estimate "time3" intercept 1 month 3; 

 estimate "time6" intercept 1 month 6; 

 estimate "time9" intercept 1 month 9;  

 estimate "time12" intercept 1 month 12;   

run; 

 

/******************************************************************* 

******************************************************************* 

COMPUTATION OF PREDICTION INTERVALS: RANDOM-EFFECTS 

******************************************************************* 

*******************************************************************/ 

 

%let _time=Month; 

%let _alpha=0.05; 

 

proc mixed data =test ;  

 

   class batch ;  

   model y = &_time / s cl outpm=predm ;     

       random  int &_time/ sub=batch s g v;  

          ods output solutionf=solutionf;  

    ods output solutionr=solutionr; 

          ods output covparms=covparms;  

          ods output dimensions=dim;  

          ods output tests3=tests3;  

          ods output nobs=nobs;  

          ods output ClassLevels=class;  

run ;  

 

 

 

/* PRINT DATASETS CREATED FROM PROC MIXED */ 

data dim2;                                                                              

        set dim;    

  do i=1 to 18 by 1;  

        if descr='Subjects' then                                                             

           do;                                                                               

              n_subj=value;                                                                  

              df_intercept = n_subj - 1;                                                     

              df_slope = n_subj - 1;     

     call symput('_n_subj', n_subj);   

              output;                                                                        

            end;                                                                        

  keep n_subj df_intercept df_slope; 

 end; 

 %put &_n_subj; 

run; 

  proc print data=dim2;run; 

 

*********************************************************************** 

     CREATE A DATASET WITH NUMBER OBS USED IN ANALSIS AND 

     DEGREES OF FREEDOM FOR MSE 
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*********************************************************************

**; 

   data nobs2; 

      set nobs; 

   do i=1 to 18 by 1;  

      if label="Number of Observations Used" then 

         do; 

           n_tot=n; 

     df_err = n_tot - (2*&_n_subj);  

           output; 

      end; 

      keep n_tot df_err ; 

   end; 

   run; 

proc print data=nobs2;run; 

   

***********************************************************************

* 

      CREATE DATASET OF INTERCEPT ESTIMATES USING PREDM DATASET 

   & MERGE WITH PREDM DATASET 

   

***********************************************************************

; 

   data intercept; 

    set predm; 

    if &_time=0 then  

          do; 

             intercept=pred;    

    output; 

    end; 

       keep  batch &_time intercept; 

   run; 

   proc print data=intercept;run; 

 

   proc sort data=intercept out=intercept; by  batch; 

 proc sort data=predm out=predm; by  batch; 

 

    

 data predm_int; 

     merge predm intercept; 

  by  batch; 

 run; 

proc print data=predm_int;run; 

 

 data predm_int2; 

    set predm_int(rename=(intercept=temp_int)); 

    retain x .; 

       intercept=temp_int; 

       if temp_int ne ' ' then x = intercept; 

       else if temp_int = ' ' then intercept = x; 

       drop x temp_int; 

    run; 

 proc print data=predm_int2;run; 
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***********************************************************************

* 

      CREATE DATASET OF SLOPE ESTIMATES USING PREDM DATASET  

   & MERGE WITH PREDM / INTERCEPT DATASET 

   

***********************************************************************

; 

 data slope; 

    set predm_int2; 

    if &_time ne 0 then 

       do; 

            slope = (pred - intercept) / &_time; 

    output; 

    end; 

       keep  batch &_time slope; 

 run; 

proc print data=slope;run; 

   

 proc sort data=slope; 

       by  batch descending &_time; 

 run; 

 

 proc sort data=predm_int2; 

       by  batch descending &_time; 

 run; 

 

 data predm_int_slope; 

     merge predm_int2 slope; 

  by  batch; 

 run; 

proc print data=predm_int_slope;run; 

 

 data predm_int_slope2; 

    set predm_int_slope(rename=(slope=temp_slope)); 

    retain x .; 

       slope=temp_slope; 

       if temp_slope ne ' ' then x = slope; 

       else if temp_slope = ' ' then slope = x; 

       drop x temp_slope; 

  run; 

  proc print data=predm_int_slope2;run; 

 

   

***********************************************************************

* 

     CREATE A DATASET WITH MSE & MERGE WITH PREDICTED VALUES DATASET 

   

***********************************************************************

;   

 proc print data=covparms; 

 run; 
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    data covparms2; 

      set covparms; 

      retain var_intercept var_slope var_err; 

   do i=1 to 18 by 1; 

    if covparm='Intercept' then var_intercept=estimate; 

       else if covparm="&_time" then var_slope=estimate; 

       else if covparm='Residual' then  

          do; 

            var_err=estimate; 

      output; 

    end; 

    drop covparm estimate; 

   end; 

    run; 

  proc print data=covparms2;run; 

 

 

  

    

***********************************************************************

* 

      COMBINE PREDM/INTERCEPT/SLOPE, COVPARM, & NOBS ESTIMATES 

    

***********************************************************************

; 

  proc sort data=predm_int_slope; 

       by  batch descending &_time; 

 run; 

   

 data reg_est; 

    merge predm_int_slope2 covparms2 dim2 nobs2; 

    *by batch; 

 run; 

   proc print data=reg_est;run; 

 

 *****************************************************************

******* 

      RESTRUCTURE RANDOM EFFECT DEVIATES DATASET 

    

***********************************************************************

; 

 proc sort data=solutionr out= solutionr;by batch ; 

 

proc print data=solutionr; 

run; 

 

 

    data solutionr2; 

    set solutionr; 

       by batch; 

       retain effect_i effect_s .; 

       if effect="Intercept" then effect_i=estimate; 

       else if effect ne "Intercept" then effect_s=estimate; 

       if last.batch then output; 
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    keep batch effect_i effect_s; 

    run; 

 proc print data=solutionr2;run; 

  

    

***********************************************************************

* 

      COMBINE PREDM/INTERCEPT/SLOPE/COVPARM/NOBS WITH RANDOM EFFECT 

DEVIATES ESTIMATES 

    

***********************************************************************

; 

 proc sort data=solutionr2 out= solutionr2;by batch; 

 proc sort data=reg_est out= reg_est;by batch; 

 data reg_est2; 

    merge reg_est solutionr2; 

    by batch; 

 run; 

 proc print data=reg_est2;run; 

  

   

***********************************************************************

* 

    COMPUTE  LOWER PREDITION LIMIT 

   

***********************************************************************

; 

   data reg_est3; 

      set reg_est2; 

 

   *** standard error of the predicted value based on the mixed 

model; 

   *** assumes no covariance between intercept & slope; 

     var_pred_vc=var_intercept + ((&_time**2)*var_slope) + var_err; 

 

   *** degrees of freedom based on satterthwaites approximation; 

        num= ((var_intercept + ((&_time**2)*var_slope) + var_err)**2); 

        denom= ((var_intercept**2)/df_intercept) + 

((((&_time**2)*var_slope)**2) / df_slope) + ((var_err**2) / df_err); 

 

       df_sw = num/denom; 

 

    fcrit=finv(1-&_alpha,2,df_sw); 

    

    * f-distribution check; 

    fcrit_ck=finv(1-&_alpha,2,70); 

    scheffe_pct_pt = sqrt(2*fcrit_ck); 

 

       piw=sqrt(2*fcrit)*sqrt(var_pred_vc); 

 

       *** compute 2-sided upper pred. limits about a future obs.; 

    pred_chk=intercept + (slope*&_time); 

 

       lpl = pred - piw; 
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    upl = pred + piw; 

    int_width=upl-lpl; 

 run; 

   

 proc print data=reg_est3;run; 

 

   

***********************************************************************

* 

    CREATE LISTING OF REGRESSION ESTIMATES AND RELEASE LIMITS (LOWER & 

UPPER) 

   

***********************************************************************

; 

 

    ods select all; 

  

    proc print data=reg_est3 label; 

         var &_time batch  intercept SLOPE pred var_intercept 

var_slope var_err  

             df_intercept df_slope df_err fcrit lpl upl int_width df_sw 

var_pred_vc piw; 

    run; 

 

 

 

 /****************************************************************

*** 

 *****************************************************************

** 

 COMPUTATION OF TOLERANCE INTERVALS: Wilks' Method  

 *****************************************************************

** 

 *****************************************************************

**/ 

  data _stats; 

 input y1 y2 y3@@; 

 datalines; 

102.783  102.55   104.583 

99.35  99.65   101.2   

98.625  104.1   101.6   

101.525  101.275  100.85  

96.75  95.85   100.925 

97.35  93.167   97.467  

 ; 

 run; 

 proc print data=_stats;run; 

  

 data wilks; set _stats; 

  

 *Computing the mean batch;  

 y_bar = mean(y1,y2,y3);  

 

 * Computing the standard deviation; 
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 SD = std(y1,y2,y3); 

  

 K = sqrt(1+1/3)*(4.303);  * where n=3 batches and 4.303 is the 

97.5 percentile  

        in a t distribution 

with 2 degrees of freedom; 

    LTL = y_bar - K*SD; 

    UTL = y_bar + K*SD; 

  run; 

 

  proc print data= wilks; 

    var LTL UTL SD y_bar; 

  run; 

 

/******************************************************************* 

******************************************************************* 

COMPUTATION OF TOLERANCE INTERVALS: Graybill's Method  

******************************************************************* 

*******************************************************************/ 

proc sort data=rc; by batch month;  

proc means; by batch month; var y; output out = ymeans mean = y;  

proc print data = ymeans; 

run; 

data test; 

 set ymeans(keep=batch month y); 

 proc print; 

run; 

proc glm data=test; 

 model y=month / ss3; 

 output out=predcheck predicted=pred h=h; 

run; 

 

proc print data=predcheck; 

run; 

 

data work; 

    length method $9; 

 input method $& alpha p pred mse df h expiry; 

 /* the value of "pred", "mse", "df", and "h" are 

    obtained from the "glm" procedure output and "pred" and "h" 

    vary for different values of "expiry" (from 0 to 12 month). 

    P=0.05 represent the 95% of tolerance point with (1-alpha)=95% 

confidence. 

    The dataset below computes the Graybill's Tolerance Interval  

    at month 0. 

 */ 

 cards; 

 Graybill   .05  .05  102.55  4.3582101  16    0.13584  0 

    ; 

  run; 

 

  proc print data=work; 

  run; 

 data stats;set work; 
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    rootmse=mse**.5; 

 A=h**.5; 

 

    np=probit(1-(p/2)); 

    deltau=-np/A; 

    tcritu=tinv(alpha/2, df, deltau); 

       gpu= - A * tcritu; 

    UTW=gpu * rootmse; 

       UTL = pred + (gpu * rootmse); 

 

       deltal=np/A; 

    tcritl=tinv(1-(alpha/2), df, deltal); 

       gpl= A * tcritl; 

    LTW=gpl * rootmse; 

       LTL = pred - (gpl * rootmse); 

  run; 

 

  proc print data=stats; 

      var LTL UTL; 

  run; 

 

 

/******************************************************************* 

******************************************************************* 

COMPUTATION OF TOLERANCE INTERVALS: Jonsson's Method 

******************************************************************* 

*******************************************************************/ 

 

 /****************************************************************

*** 

 *****************************************************************

** 

 START GLOBAL MACRO 

 *****************************************************************

**  

 *****************************************************************

**/ 

 * First run the global macro and then change the value of _time 

to  

   get the tolerance intervals; 

 %macro bigone(_time, _n, _TotTimes); 

 

 %do _t=0 %to &_time %by 1;   

  data a; 

  set test; 

  i = month; 

  i2 = i*i; 

  Y2 = Y*Y; 

  iY = i*Y; 

  run; 

 proc sort; 

  by batch; 

 run; 

 proc means noprint sum; 
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  var i Y i2 Y2 iY; 

  by batch; 

  output out = sas1 sum = si sY si2 sY2 siY; 

 run; 

 proc print data = sas1; 

 run; 

 data b; 

   set sas1; 

  mt = si/&_TotTimes; mYj = sY/&_TotTimes; mYj2 = 

mYj*mYj; Wttj = si2-si*si/&_TotTimes; 

  WtYj = siY-si*sY/&_TotTimes; WYjYj = sY2-sY*sY/&_TotTimes;

 bj = WtYj/Wttj; aj = mYj-bj*mt; 

 run; 

 proc means noprint sum; 

  var bj aj mYj mYj2 Wttj WYjYj WtYj; 

  output out = sas2 sum = sbj saj smYj smYj2 sWttj sWYjYj 

sWtYj; 

 run; 

 proc print data= sas2; 

 run;  

 

 /* totals */ 

 data c;  

  set sas2; 

  b = sbj/&_n; a = saj/&_n; Wtt = sWttj/&_n; BYY = smYj2-

smYj*smYj/&_n; 

  vare = (sWYjYj-b*sWtYj)/(&_n*(&_TotTimes-1)-1); varu = 

BYY/(&_n-1)-vare/&_TotTimes; 

  R = vare*(1-1/&_TotTimes)*(&_n*(&_TotTimes-1)-

3)/(vare+varu)/(&_n*(&_TotTimes-1)-1); 

  Z = (1-R)*(1-R)/(&_n-1)+R*R/(&_n*(&_TotTimes-1)-1); 

  V = sqrt(vare+varu)/(1-Z/4); 

  call symput('R', R);run; 

 proc print ; 

  var a b Z V R vare varu Wtt BYY; 

 run; 

 

 /****************************************************************

************************** 

 *****************************************************************

************************** 

 THIS MACRO CREATES K_hat for a given TIME POINT 

 *****************************************************************

************************** 

 *****************************************************************

*************************/ 

 

 

 data d; 

 meanT = 2.0; Wtt = 110.83; beta = 0.95; 

 

 const = gamma(1/2)*sqrt(2); 

  do K = 2.0 to 3.0 by 0.0001; 

   C = (&_time - meanT)**2/&_n/(1-1/&_TotTimes)/Wtt; 



www.manaraa.com

    47 

   AA = 2*(const*(exp(K*K/2))*(2*probnorm(K)-1-

beta)/K-1/&_n)/K/K; 

   R_hat = ((&_n*(&_TotTimes-1)-1)*(1-(&_n-1)*C/K/K)-

sqrt((&_n*(&_TotTimes-1)-1)**2*(1-(&_n-1)*C/K/K)**2-(&_n*&_TotTimes-

2)*(&_n*(&_TotTimes-1)-1)*(1-(&_n-1)*AA)))/(&_n*&_TotTimes-2); 

   dif_R=abs(R_hat-&R);  

   output; 

  end; 

 run; 

 

 data e; set d; if dif_R=. then delete; run; 

 

 proc sort data=e; by dif_R; run; 

 

 data f; set e; 

   if _n_ ne 1 then delete; 

   call symput("K", K);run; 

 run; 

 

 proc print data = f; 

  var K; 

  title ' K_hat at Time &time when beta = 0.95'; 

 run; 

 

 

 /****************************************************************

************************** 

 *****************************************************************

************************** 

 THIS MACRO CREATES TOLERANCE INTERVALS FOR EACH TIME POINT 

 *****************************************************************

************************** 

 *****************************************************************

*************************/ 

 data ti; 

  set c d; 

 

  low_ti = (a+b*&_time)-&K*V; 

  up_ti  = (a+b*&_time)+&K*V; 

 proc sort; by low_ti up_ti;  

 run; 

 

 data tol_int; set ti; 

  if low_ti=. then delete; 

  else if up_ti=. then delete; 

 run; 

 

 proc print data=tol_int; 

  var low_ti up_ti; 

 run; 

 

 run;quit; 

%end;      

%mend; 



www.manaraa.com

    48 

 

%bigone(0,3,6); * change the value of _time in bigone(_time, _n, 

_TotTimes) to  

                  obtain the values of Kl and the tolerance intervals; 

 

/******************************************************************* 

******************************************************************* 

END GLOBAL MACRO 

******************************************************************* 

*******************************************************************/ 

 

/******************************************************************* 

******************************************************************* 

PLOTS OF TOLERANCE INTERVALS 

******************************************************************* 

*******************************************************************/ 

data TI; 

input t y Jonsson_low Jonsson_high Graybill_low Graybill_high Wilks_low 

Wilks_high y_bar; 

cards; 

0 102.55 97.43 107.66 95.61 109.49 97.7771

 108.834 103.31 

1 102.05 96.94 107.16 95.23 108.87 95.1333 105     

100.07 

3 101.06 95.95 106.16 94.43 107.69 87.8229

 115.06 101.44 

6 99.56 94.41 104.71 92.99 106.13 99.5211 102.912

 101.22 

9 98.07 92.83 103.31 91.29 104.85 84.387 111.296

 97.84  

12 96.58 91.22 101.94 89.39 103.77 83.8237 108.166

 96     

; 

* The following exports the data into microsoft excel; 

ods html file = 'C:\Documents and 

Settings\sanogok\Desktop\THESIS\thesis.xls' ;  

proc print data =TI;  

title 'Tolerance Intervals' ;  

run ;  

ods html close ;  

* The excel statemtents for creating the plot are the following ; 

 

* For y_hat 

=SERIES(Sheet1!$B$1,Sheet1!$A$2:$A$7,Sheet1!$B$2:$B$7,1); 

 

* For Jonsson_low 

=SERIES(Sheet1!$C$1,Sheet1!$A$2:$A$7,Sheet1!$C$2:$C$7,1); 

 

* For Jonsson_high 

=SERIES(Sheet1!$D$1,Sheet1!$A$2:$A$7,Sheet1!$D$2:$D$7,1); 

 

* For Graybill_low 

=SERIES(Sheet1!$E$1,Sheet1!$A$2:$A$7,Sheet1!$E$2:$E$7,1); 
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* For Graybill_high 

=SERIES(Sheet1!$F$1,Sheet1!$A$2:$A$7,Sheet1!$F$2:$F$7,1); 

 

* For y_bar 

=SERIES(Sheet1!$I$1,Sheet1!$A$2:$A$7,Sheet1!$I$2:$I$7,1); 

 

* For Wilks_low 

=SERIES(Sheet1!$G$1,Sheet1!$A$2:$A$7,Sheet1!$G$2:$G$7,5); 

 

* For Wilks_high 

=SERIES(Sheet1!$H$1,Sheet1!$A$2:$A$7,Sheet1!$H$2:$H$7,5); 

 

* t represents the x-asis and y the y-axis; 
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